$$L^2$$ boundedness of Hilbert transforms along variable flat curves
نویسندگان
چکیده
In this paper, the $$L^2$$ boundedness of Hilbert transform along variable flat curve $$(t,P(x_1)\gamma (t))$$ $$\begin{aligned} H_{P,\gamma }f(x_1,x_2):=\mathrm {p.\,v.}\int _{-\infty }^{\infty }f(x_1-t,x_2-P(x_1)\gamma (t))\,\frac{\text {d}t}{t},\quad \forall \, (x_1,x_2)\in {\mathbb {R}}^2, \end{aligned}$$ is studied, where P a real polynomial on $${\mathbb {R}}$$ . A new sufficient condition $$\gamma $$ introduced.
منابع مشابه
On the Boundedness of the Bilinear Hilbert Transform along “non-flat” Smooth Curves
We are proving L(R) × L(R) → L(R) bounds for the bilinear Hilbert transform HΓ along curves Γ = (t,−γ(t)) with γ being a smooth “non-flat” curve near zero and infinity.
متن کاملBilinear Hilbert Transforms along Curves I. the Monomial Case
We establish an L2×L2 to L estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.
متن کاملLp ESTIMATES FOR THE HILBERT TRANSFORMS ALONG A ONE-VARIABLE VECTOR FIELD
We prove L estimates on the Hilbert transform along a measurable, non-vanishing, one-variable vector field in R. Aside from an L estimate following from a simple trick with Carleson’s theorem, these estimates were unknown previously. This paper is closely related to a recent paper of the first author ([2]).
متن کاملDouble Hilbert Transforms along Polynomial Surfaces in R3
where P(s, t) is a polynomial in s and t with P(0,0)= 0, and ∇P(0,0)= 0. We call H the (local) double Hilbert transform along the surface (s, t,P (s, t)). The operator may be precisely defined for a Schwartz function f by integrating where ≤ |s| ≤ 1 and η ≤ |t | ≤ 1, and then taking the limit as ,η→ 0. The corresponding 1-parameter problem has been extensively studied (see [RS1], [RS2], and [S]...
متن کامل-boundedness of the Hilbert transform
The Hilbert transform is essentially the only singular operator in dimension 1. This undoubtedly makes it one of the the most important linear operators in harmonic analysis. The Hilbert transform has had a profound bearing on several theoretical and physical problems across a wide range of disciplines; this includes problems in Fourier convergence, complex analysis, potential theory, modulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2021
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-020-02672-9